
Java Magazine

Wri�en by the Java community for Java and JVM developers

Java garbage collection: The 10-release
evolution from JDK 8 to JDK 18

June 16, 2022 | 19 minute read

Thomas Schatzl

Thousands of enhancements improve throughput, latency, and
memory footprint.

The general availability of JDK 18 marked the 10th release since the still-popular JDK 8 release in March

2014. This anniversary is a good opportunity to take pause and see what happened with the HotSpot

JVM’s garbage collectors along the way.

This article is based on my presentation “JDK 8 to JDK 18 in garbage collection: 10 releases, 2000+

enhancements.”

Introducing garbage collection, metrics, and trade-o�s

The component of the HotSpot JVM that manages the application heap of your application is called the

garbage collector (GC). A GC governs the whole lifecycle of application heap objects, beginning when the

application allocates memory and continuing through reclaiming that memory for eventual reuse later

Java 18, Java 8, JVM Internals

Java Magazine

https://blogs.oracle.com/javamagazine/authors/Blog-Author/CORE0824562EBBC64225B8EF37E9E68C84AF/thomas-schatzl
https://openjdk.java.net/projects/jdk/18/
https://www.oracle.com/java/technologies/javase/8-relnotes.html
https://www.youtube.com/watch?v=0BpY132mKm0
https://blogs.oracle.com/javamagazine/category/jm-java-18
https://blogs.oracle.com/javamagazine/category/jm-java-8
https://blogs.oracle.com/javamagazine/category/jm-jvm-internals
https://www.facebook.com/dialog/share?app_id=209650819625026&href=/javamagazine/post.html
https://twitter.com/share?url=/javamagazine/post.html
https://www.linkedin.com/shareArticle?url=/javamagazine/post.html
https://blogs.oracle.com/javamagazine/post/placeholder.html
https://blogs.oracle.com/
https://blogs.oracle.com/javamagazine/

application allocates memory and continuing through reclaiming that memory for eventual reuse later.

At a very high level, the most basic functionality of garbage collection algorithms in the JVM are the

following:

There are many more requirements for a good garbage collection algorithm, but these three are the most

basic ones and su�cient for this discussion.

There are many ways to satisfy all these requirements, but unfortunately there is no silver bullet and no

one-size-�ts-all algorithm. For this reason, the JDK provides a few garbage collection algorithms to

choose from, and each is optimized for di�erent use cases. Their implementation roughly dictates

behavior about one or more of the three main performance metrics of throughput, latency, and memory

footprint and how they impact Java applications.

These three metrics are connected: A high throughput collector may signi�cantly impact latency (but

minimizes impact on the application) and the other way around. Lower memory consumption may require

the use of algorithms that are less optimal in the other metrics. Lower latency collectors may do more

work concurrently or in small steps as part of the execution of the application, taking away more

processor resources.

This relationship is often graphed in a triangle with one metric in each corner, as shown in Figure 1. Every

garbage collection algorithm occupies a part of that triangle based on where it is targeted and what it is

best at.

Upon an allocation request for memory from the application, the GC provides memory. Providing that

memory should be as quick as possible.

The GC detects memory that the application is never going to use again. Again, this mechanism should

be e�cient and not take an undue amount of time. This unreachable memory is also commonly called

garbage.

The GC then provides that memory again to the application, preferably “in time,” that is, quickly.

Throughput represents the amount of work that can be done in a given time unit. In terms of this

discussion, a garbage collection algorithm that performs more collection work per time unit is

preferable, allowing higher throughput of the Java application.

Latency gives an indication of how long a single operation of the application takes. A garbage

collection algorithm focused on latency tries to minimize impacting latency. In the context of a GC, the

key concerns are whether its operation induces pauses, the extent of any pauses, and how long the

pauses may be.

Memory footprint in the context of a GC means how much extra memory beyond the application’s Java

heap memory usage the GC needs for proper operation. Data used purely for the management of the

Java heap takes away from the application; if the amount of memory the GC (or, more generally, the

JVM) uses is less, more memory can be provided to the application’s Java heap.

Figure 1. The GC performance metrics triangle

Trying to improve a GC in one or more of the metrics often penalizes the others.

The OpenJDK GCs in JDK 18

OpenJDK provides a diverse set of �ve GCs that focus on di�erent performance metrics. Table 1 lists their

names, their area of focus, and some of the core concepts used to achieve the desired properties.

Table 1. OpenJDK’s �ve GCs

Garbage collector Focus area Concepts

Parallel Throughput
Multithreaded stop-the-world (STW)

compaction and generational collection

Garbage First (G1)
Balanced

performance

Multithreaded STW compaction, concurrent

liveness, and generational collection

Z Garbage Collector

(ZGC) (since JDK 15)
Latency Everything concurrent to the application

Shenandoah (since

JDK 12)
Latency Everything concurrent to the application

Serial
Footprint and

startup time

Single-threaded STW compaction and

generational collection

The Parallel GC is the default collector for JDK 8 and earlier. It focuses on throughput by trying to get work

done as quickly as possible with minimal regard to latency (pauses).

The Parallel GC frees memory by evacuating (that is, copying) the in-use memory to other locations in the

heap in more compact form, leaving large areas of then-free memory within STW pauses. STW pauses

occur when an allocation request cannot be satis�ed; then the JVM stops the application completely, lets

the garbage collection algorithm perform its memory compaction work with as many processor threads

https://docs.oracle.com/en/java/javase/18/gctuning/parallel-collector1.html
https://docs-uat.us.oracle.com/en/java/javase/18/gctuning/garbage-first-g1-garbage-collector1.html#GUID-ED3AB6D3-FD9B-4447-9EDF-983ED2F7A573
https://docs.oracle.com/en/java/javase/18/gctuning/z-garbage-collector.html
https://wiki.openjdk.java.net/display/shenandoah/Main
https://docs.oracle.com/en/java/javase/18/gctuning/available-collectors.html#GUID-45794DA6-AB96-4856-A96D-FDE5F7DEE498

as available, allocates the memory requested in the allocation, and �nally continues execution of the

application.

The Parallel GC also is a generational collector that maximizes garbage collection e�ciency. More on the

idea of generational collection is discussed later.

The G1 GC has been the default collector since JDK 9. G1 tries to balance throughput and latency concerns.

On the one hand, memory reclamation work is still performed during STW pauses using generations to

maximize e�ciency—as is done with the Parallel GC—but at the same time, it tries to avoid lengthy

operations in these pauses.

G1 performs lengthy work concurrent to the application, that is, while the application is running using

multiple threads. This decreases maximum pause times signi�cantly, at the cost of some overall

throughput.

The ZGC and Shenandoah GCs focus on latency at the cost of throughput. They a�empt to do all garbage

collection work without noticeable pauses. Currently neither is generational. They were �rst introduced in

JDK 15 and JDK 12, respectively, as nonexperimental versions.

The Serial GC focuses on footprint and startup time. This GC is like a simpler and slower version of the

Parallel GC, as it uses only a single thread for all work within STW pauses. The heap is also organized in

generations. However, the Serial GC excels at footprint and startup time, making it particularly suitable for

small, short-running applications due to its reduced complexity.

OpenJDK provides another GC, Epsilon, which I omi�ed from Table 1. Why? Because Epsilon only allows

memory allocation and never performs any reclamation, it does not meet all the requirements for a GC.

However, Epsilon can be useful for some very narrow and special-niche applications.

Short introduction to the G1 GC

The G1 GC was introduced in JDK 6 update 14 as an experimental feature, and it was fully supported

beginning with JDK 7 update 4. G1 has been the default collector for the HotSpot JVM since JDK 9 due to

its versatility: It is stable, mature, very actively maintained, and it’s being improved all the time. I hope the

remainder of this article will prove that to you.

How does G1 achieve this balance between throughput and latency?

One key technique is generational garbage collection. It exploits the observation that the most recently

allocated objects are the most likely ones that can be reclaimed almost immediately (they “die” quickly).

So G1, and any other generational GC, splits the Java heap into two areas: a so-called young generation

into which objects are initially allocated and an old generation where objects that live longer than a few

garbage collection cycles for the young generation are placed so they can be reclaimed with less e�ort.

The young generation is typically much smaller than the old generation. Therefore, the e�ort for

collecting it, plus the fact that a tracing GC such as G1 processes only reachable (live) objects during

young-generation collections, means the time spent garbage collecting the young generation generally is

short, and a lot of memory is reclaimed at the same time.

At some point, longer-living objects are moved into the old generation.

Therefore, from time to time, there is a need to collect garbage and reclaim memory from the old

https://www.oracle.com/java/technologies/javase/9-relnotes.html
https://www.oracle.com/java/technologies/javase/6u14.html
https://www.oracle.com/java/technologies/javase/7u4-relnotes.html

, , g g y

generation as it �lls up. Since the old generation is typically large, and it often contains a signi�cant

number of live objects, this can take quite some time. (For example, the Parallel GC’s full collections often

take many times longer than its young-generation collections.)

For this reason, G1 splits old-generation garbage collection work into two phases.

Reclaiming the old generation incrementally is a bit more ine�cient than doing all this work at once (as

the Parallel GC does) due to inaccuracies in tracing through the object graph as well as the time and space

overhead for managing support data structures for incremental garbage collections, but it signi�cantly

decreases the maximum time spent in pauses. As a rough guide, garbage collection times for incremental

garbage collection pauses take around the same time as the ones reclaiming only memory from the

young generation.

In addition, you can set the pause time goal for both of these types of garbage collection pauses via the

MaxGCPauseMillis command-line option; G1 tries to keep the time spent below this value. The default

value for this duration is 200 ms. That might or might not be appropriate for your application, but it is only

a guide for the maximum. G1 will keep pause times lower than that value if possible. Therefore, a good

�rst a�empt to improve pause times is trying to decrease the value of MaxGCPauseMillis.

Progress from JDK 8 to JDK 18

Now that I’ve introduced OpenJDK’s GCs, I’ll detail improvements that have been made to the three

metrics—throughput, latency, and memory footprint—for the GCs during the last 10 JDK releases.

Throughput gains for G1. To demonstrate the throughput and latency improvements, this article uses the

SPECjbb2015 benchmark. SPECjbb2015 is a common industry benchmark that measures Java server

performance by simulating a mix of operations within a supermarket company. The benchmark provides

two metrics.

This article uses maxjOPS as a base for comparing the throughput for JDK releases and the actual pause

time improvements for latency. While criticaljOPS values are representative of latency induced by pause

time, there are other sources that contribute to that score. Directly comparing pause times avoids this

problem.

Figure 2 shows maxjOPS results for G1 in composite mode on a 16 GB Java heap, graphed relative to JDK

8 for JDK 11 and JDK 18. As you can see, the throughput scores increase signi�cantly simply by moving to

G1 �rst traces through the live objects concurrently to the Java application. This moves a large part of

the work needed for reclaiming memory from the old generation out of the garbage collection pauses,

thus reducing latency. The actual memory reclamation, if done all at once, would still be very time

consuming on large application heaps.

Therefore, G1 incrementally reclaims memory from the old generation. After the tracing of live objects,

for every one of the next few regular young-generation collections, G1 compacts a small part of the old

generation in addition to the whole young generation, reclaiming memory there as well over time.

maxjOPS corresponds to the maximum number of transactions the system can provide. This is a

throughput metric.

criticaljOPS measures throughput under several service-level agreements (SLAs), such as response

times, from 10 ms to 100 ms.

https://www.spec.org/jbb2015/

later JDK releases. JDK 11 improves by around 5% and JDK 18 by around 18%, respectively, compared to

JDK 8. Simply put, with later JDKs, more resources are available and used for actual work in the

application.

Figure 2. G1 throughput gains measured with SPECjbb2015 maxjOPS

The discussion below a�empts to a�ribute these throughput improvements to particular garbage

collection changes. However, garbage collection performance, particularly throughput, is also very

amenable to other generic improvements such as code compilation, so the garbage collection changes

are not responsible for all the uplift.

One signi�cant improvement early in JDK 9 was how G1 starts the old-generation collection lazily, as late

as possible.

In JDK 8 the user had to manually set the time when G1 started concurrent tracing of live objects for old-

generation collection. If the time was set too early, the JVM did not use all the application heap assigned

to the old generation before starting the reclamation work. One drawback was that this did not give the

objects in the old generation as much time to become reclaimable. So G1 would not only take more

processor resources to analyze liveness because more data was still live, but also G1 would do more work

than necessary freeing memory for the old generation.

Another problem was that if the time to start old-generation collection were set to be too late, the JVM

might run out of memory, causing a very slow full collection. Beginning with JDK 9, G1 automatically

determines an optimal point at which to start old-generation tracing, and it even adapts to the current

application’s behavior.

Another idea that was implemented in JDK 9 is related to trying to reclaim large objects in the old

generation that G1 automatically places there at a higher frequency than the rest of the old generation.

Similar to the use of generations, this is another way the GC focuses on “easy pickings” work that has

t ti ll hi h i ft ll l bj t ll d l bj t b th t k l t f

https://bugs.openjdk.java.net/browse/JDK-8136677
https://bugs.openjdk.java.net/browse/JDK-8048179

potentially very high gain—after all, large objects are called large objects because they take lots of space.

In some (admi�edly rare) applications, this even yields such large reductions in the number of garbage

collections and total pause times that G1 beats the Parallel GC on throughput.

In general, every release includes optimizations that make garbage collection pauses shorter while

performing the same work. This leads to a natural improvement in throughput. There are many

optimizations that could be listed in this article, and the following section about latency improvements

points out some of them.

Similar to the Parallel GC, G1 got dedicated nonuniform memory access (NUMA) awareness for allocation

to the Java heap in JDK 14. Since then, on computers with multiple sockets where memory access times

are nonuniform—that is, where memory is somewhat dedicated to the sockets of the computer, and

therefore access to some memory can be slower—G1 tries to exploit locality.

When NUMA awareness applies, the G1 GC assumes that objects allocated on one memory node (by a

single thread or thread group) will be mostly referenced from other objects on the same node. Therefore,

while an object stays in the young generation, G1 keeps objects on the same node, and it evenly

distributes the longer-living objects across nodes in the old generation to minimize access-time variation.

This is similar to what the Parallel GC implements.

One more improvement I would like to point out here applies to uncommon situations, the most notable

probably being full collections. Normally, G1 tries to prevent full collections by ergonomically adjusting

internal parameters. However, in some extreme conditions this is not possible, and G1 needs to perform a

full collection during a pause. Until JDK 10, the implemented algorithm was single-threaded, and so it was

extremely slow. The current implementation is on par with the Parallel GC’s full garbage collection

process. It’s still slow, and something you want to avoid, but it’s much be�er.

Throughput gains for the Parallel GC. Speaking of the Parallel GC, Figure 3 shows maxjOPS score

improvements from JDK 8 to JDK 18 on the same heap con�guration used earlier. Again, only by

substituting the JVM, even with the Parallel GC, you can get a modest 2% to around a nice 10%

improvement in throughput. The improvements are smaller than with G1 because the Parallel GC started

o� from a higher absolute value, and there has been less to gain.

https://openjdk.java.net/jeps/345
https://openjdk.java.net/jeps/307

Figure 3. Throughput gains for the Parallel GC measured with SPECjbb2015 maxjOPS

Latency improvements on G1. To demonstrate latency improvements for HotSpot JVM GCs, this section

uses the SPECjbb2015 benchmark with a �xed load and then measures pause times. The Java heap size is

set to 16 GB. Table 2 summarizes average and 99th percentile (P99) pause times and relative total pause

times within the same interval for di�erent JDK versions at the default pause time goal of 200 ms.

Table 2. Latency improvements with the default pause time of 200 ms

JDK 8, 200 ms JDK 11, 200 ms JDK 18, 200 ms

Average (ms) 124 111 89

P99 (ms) 176 111 111

Relative collection time (%) n/a -15.8 -34.4

JDK 8 pauses take 124 ms on average, and P99 pauses are 176 ms. JDK 11 improves average pause time to

111 ms and P99 pauses to 134 ms—in total spending 15.8% less time in pauses. JDK 18 signi�cantly

improves on that once more, resulting in pauses taking 89 ms on average and P99 pause times taking 104

ms—resulting in 34.4% less time in garbage collection pauses.

I extended the experiment to add a JDK 18 run with a pause time goal set to 50 ms, because I arbitrarily

decided that the default for -XX:MaxGCPauseMillis of 200 ms was too long. G1, on average, met the

pause time goal, with P99 garbage collection pauses taking 56 ms (see Table 3). Overall, total time spent

in pauses did not increase much (0.06%) compared to JDK 8.

In other words, by substituting a JDK 8 JVM with a JDK 18 JVM, you either get signi�cantly decreased

average pauses at potentially increased throughput for the same pause time goal, or you can have G1

keep a much smaller pause time goal (50 ms) at the same total time spent in pauses, which roughly

corresponds to the same throughput.

Table 3. Latency improvements by se�ing the pause time goal to 50 ms

JDK 8, 200

ms

JDK 11, 200

ms

JDK 18, 200

ms

JDK 18, 50

ms

Average (ms) 124 111 89 44

P99 (ms) 176 134 104 56

Relative collection time

(%)
n/a -15.8 -34.4 +0.06

The results in Table 3 were made possible by many improvements since JDK 8. Here are the most notable

ones.

A fairly large contribution to reduced latency was the reduction of the metadata needed to collect parts of

the old generation. The so-called remembered sets have been trimmed signi�cantly by both

improvements to the data structures themselves as well as to not storing and updating never-needed

information. In today’s computer architectures, a reduction in metadata to be managed means much less

memory tra�c, which improves performance.

Another aspect related to remembered sets is the fact that the algorithm for �nding references that point

into currently evacuated areas of the heap has been improved to be more amenable to parallelization.

Instead of looking through that data structure in parallel and trying to �lter out duplicates in the inner

loops, G1 now separately �lters out remembered-set duplicates in parallel and then parallelizes the

processing of the remainder. This makes both steps more e�cient and much easier to parallelize.

Further, the processing of these remembered-set entries has been looked at very thoroughly to trim

unnecessary code and optimize for the common paths.

Another focus in JDKs later than JDK 8 has been improving the actual parallelization of tasks within a

pause: Changes have a�empted to improve parallelization either by making phases parallel or by creating

larger parallel phases out of smaller serial ones to avoid unnecessary synchronization points. Signi�cant

resources have been spent to improve work balancing within parallel phases so that if a thread is out of

work, it should be cleverer when looking for work to steal from other threads.

By the way, later JDKs started looking at more uncommon situations, one of them being evacuation

failure. Evacuation failure occurs during garbage collection if there is no more space to copy objects into.

Garbage collection pauses on ZGC. In case your application requires even shorter garbage collection

pause times, Table 4 shows a comparison with one of the latency-focused collectors, ZGC, on the same

workload used earlier. It shows the pause-time durations presented earlier for G1 plus an additional

rightmost column showing ZGC.

Table 4. ZGC latency compared to G1 latency

JDK 8, 200 ms,

G1

JDK 18, 200 ms,

G1

JDK 18, 50 ms,

G1

JDK 18,

ZGC

Average

(ms)
124 89 44 0.01

P99 (ms) 176 104 56 0.031

ZGC delivers on its promise of submillisecond pause time goals, moving all reclamation work concurrent

to the application. Only some minor work to provide closure of garbage collection phases still needs

pauses. As expected, these pauses will be very small: in this case, even far below the suggested

millisecond range that ZGC aims to provide.

https://bugs.openjdk.java.net/browse/JDK-8017163
https://bugs.openjdk.java.net/browse/JDK-8180415
https://bugs.openjdk.java.net/browse/JDK-8213108

Footprint improvements for G1. The last metric this article will examine is progress in the memory

footprint of the G1 garbage collection algorithm. Here, the footprint of the algorithm is de�ned as the

amount of extra memory outside of the Java heap that it needs to provide its functionality.

In G1, in addition to static data dependent on the Java heap size, which takes up approximately 3.2% of the

size of the Java heap, often the other main consumer of additional memory is remembered sets that

enable generational garbage collection and, in particular, incremental garbage collection of the old

generation.

One class of applications that stresses G1’s remembered sets is object caches: They frequently generate

references between areas within the old generation of the heap as they add and remove newly cached

entries.

Figure 4 shows G1 native memory usage changes from JDK 8 to JDK 18 on a test application that

implements such an object cache: Objects that represent cached information are queried, added, and

removed in a least-recently-used fashion from a large heap. This example uses a Java heap of 20 GB, and

it uses the JVM’s native memory tracking (NMT) facility to determine memory usage.

Figure 4. The G1 GC’s native memory footprint

With JDK 8, after a short warmup period, G1 native memory usage se�les at around 5.8 GB of native

memory. JDK 11 improved on that, reducing the native memory footprint to around 4 GB; JDK 17 improved

it to around 1.8 GB; and JDK 18 se�les at around 1.25 GB of garbage collection native memory usage. This

is a reduction of extra memory usage from almost 30% of the Java heap in JDK 8 to around 6% of extra

memory usage in JDK 18.

https://openjdk.java.net/jeps/195

There is no particular cost in throughput or latency associated with these changes, as previous sections

showed. Indeed, reducing the metadata the G1 GC maintains generally improved the other metrics so far.

The main principle for these changes from JDK 8 through JDK 18 has been to maintain garbage collection

metadata only on a very strict as-needed basis, maintaining only what is expected to be needed when it is

needed. For this reason, G1 re-creates and manages this memory concurrently, freeing data as quickly as

possible. In JDK 18, enhancements to the representation of this metadata and storing it more densely

contributed signi�cantly to the improvement of the memory footprint.

Figure 4 also shows that in later JDK releases G1 increased its aggressiveness, step by step, in giving back

memory to the operating system by looking at the di�erence between peaks and valleys in steady-state

operations—in the last release, G1 even does this process concurrently.

The future of garbage collection

Although it is hard to predict what the future holds and what the many projects to improve garbage

collection and, in particular, G1, will provide, some of the following developments are more likely to end up

in the HotSpot JVM in the future.

One problem that is actively being worked on is removing the need to lock out garbage collection when

Java objects are used in native code: Java threads triggering a garbage collection must wait until no other

regions are holding references to Java objects in native code. In the worst cases, native code may block

garbage collection for minutes. This can lead to software developers choosing to not use native code at

all, a�ecting throughput adversely. With the changes suggested in JEP 423 (Region pinning for G1), this

will become a nonissue for the G1 GC.

Another known disadvantage of using G1 compared to the throughput collector, Parallel GC, is its impact

on throughput—users report di�erences in the range of 10% to 20% in extreme cases. The cause of this

problem is known, and there have been a few suggestions on how to improve this drawback without

compromising other qualities of the G1 GC.

Fairly recently, it’s been determined that pause times and, in particular, work distribution e�ciency in the

garbage collection pauses are still less than optimal.

One current focus of a�ention is removing one-half of G1’s largest helper data structure, the mark

bitmaps. There are two bitmaps used in the G1 algorithm that help with determining which objects are

currently live and can be safely concurrently inspected for references by G1. An open enhancement

request indicates that the purpose of one of these bitmaps could be replaced by other means. That would

immediately reduce G1 metadata by a �xed 1.5% of the Java heap size.

There is much ongoing activity to change the ZGC and Shenandoah GCs to be generational. In many

applications, the current single-generational design of these GCs has too many disadvantages regarding

throughput and timeliness of reclamation, often requiring much larger heap sizes to compensate.

Conclusion

This article has shown that improvements to the HotSpot JVM garbage collection algorithms from JDK 8

through JDK 18 have been signi�cant, as all three of the performance indicators—throughput, latency, and

memory footprint—were improved by nontrivial amounts. Every new JDK release, even if it did not

https://openjdk.java.net/jeps/423
https://bugs.openjdk.java.net/browse/JDK-8210708

 Previous Post

About

Careers

Developers

Investors

Partners

Startups

Resources

for
Analyst
Reports

Best CRM

Cloud
Economics

Corporate
Responsibility

Diversity and
Inclusion

Why Oracle

What is
Customer
Service?

What is ERP?

What is
Marketing
Automation?

What is
Procurement?

Learn

Try Oracle
Cloud Free Tier

Oracle
Sustainability

Oracle COVID-

19 Response

Oracle and
SailGP

Oracle and
Premier

What's New

US Sales
1.800.633.0738

How can we help?

Subscribe to
Oracle Content

Try Oracle Cloud
Free Tier

Events

News

Contact Us

memory footprint were improved by nontrivial amounts. Every new JDK release, even if it did not

explicitly point out such improvements in JEPs, provided tangible improvements. It will likely stay that way

for the foreseeable future, so keep up to date and enjoy the for-free improvements!

Thanks go to the many OpenJDK contributors who made all these great improvements possible over time.

Dig deeper

Thomas Schatzl

Thomas Schatzl, based in Austria, is a principal member of technical sta� at Oracle. He has been

contributing to the HotSpot JVM garbage collectors since 2012.

Understanding the JDK’s new superfast garbage collectors

Understanding garbage collectors

Epsilon: The JDK’s do-nothing garbage collector

Per Liden’s garbage collector notes

HotSpot Virtual Machine Garbage Collection Tuning Guide

JDK 18 G1/Parallel/Serial GC changes

https://blogs.oracle.com/javamagazine/post/jug-spotlight-sfjug-san-francisco-java-user-group
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/careers/
https://developer.oracle.com/
https://investor.oracle.com/home/default.aspx
https://www.oracle.com/partner/
https://www.oracle.com/startup/
https://www.oracle.com/corporate/analyst-reports.html
https://www.oracle.com/cx/what-is-crm/
https://www.oracle.com/cloud/economics/
https://www.oracle.com/corporate/citizenship/
https://www.oracle.com/corporate/careers/diversity-inclusion/
https://www.oracle.com/corporate/security-practices/
https://www.oracle.com/cx/service/what-is-customer-service/
https://www.oracle.com/erp/what-is-erp/
https://www.oracle.com/cx/marketing/automation/what-is-marketing-automation/
https://www.oracle.com/erp/what-is-procurement/
https://www.oracle.com/human-capital-management/talent-management/what-is-talent-management/
https://www.oracle.com/cloud/free/?source=:ow:o:h:nav:050120SiteFooter&intcmp=:ow:o:h:nav:050120SiteFooter
https://www.oracle.com/solutions/green/
https://www.oracle.com/corporate/covid-19.html
https://www.oracle.com/sailgp/
https://www.oracle.com/premier-league/
tel:18006330738
https://www.oracle.com/corporate/contact/
https://go.oracle.com/subscriptions
https://www.oracle.com/cloud/free/?source=:ow:o:h:nav:050120SiteFooter&intcmp=:ow:o:h:nav:050120SiteFooter
https://www.oracle.com/events/
https://www.oracle.com/news/
https://blogs.oracle.com/javamagazine/post/understanding-the-jdks-new-superfast-garbage-collectors
https://blogs.oracle.com/javamagazine/post/understanding-garbage-collectors
https://blogs.oracle.com/javamagazine/post/epsilon-the-jdks-do-nothing-garbage-collector
https://malloc.se/
https://docs.oracle.com/en/java/javase/18/gctuning/
https://tschatzl.github.io/2022/03/14/jdk18-g1-parallel-gc-changes.html

© 2022 Oracle Site Map Privacy / Do Not Sell My Info Cookie Preferences Ad Choices Careers

Security
Practices

What is Talent
Management?

What is VM?

Premier
League

Oracle and Red
Bull Racing
Honda

https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
https://www.oracle.com/legal/privacy/privacy-choices.html
https://www.oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/corporate/careers/
https://www.oracle.com/corporate/security-practices/
https://www.oracle.com/human-capital-management/talent-management/what-is-talent-management/
https://www.oracle.com/cloud/compute/virtual-machines/what-is-virtual-machine/
https://www.oracle.com/premier-league/
https://www.oracle.com/redbullracing/

